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We present a simple model for dipolar elastic membranes that gives lattice-bound point dipoles complete
orientational freedom as well as translational freedom along one coordinate �out of the plane of the membrane�.
There is an additional harmonic term which binds each of the dipoles to the six nearest neighbors on either
triangular or distorted lattices. The translational freedom of the dipoles allows triangular lattices to find states
that break out of the normal orientational disorder of frustrated configurations and which are stabilized by
long-range antiferroelectric ordering. In order to break out of the frustrated states, the dipolar membranes form
corrugated or “rippled” phases that make the lattices effectively nontriangular. We observe three common
features of the corrugated dipolar membranes: �1� the corrugated phases develop easily when hosted on
triangular lattices, �2� the wave vectors for the surface ripples are always found to be perpendicular to the
dipole director axis, and �3� on triangular lattices, the dipole director axis is found to be parallel to any of the
three equivalent lattice directions.

DOI: 10.1103/PhysRevE.75.031602 PACS number�s�: 68.03.Hj, 82.20.Wt

I. INTRODUCTION

The properties of polymeric membranes are known to de-
pend sensitively on the details of the internal interactions
between the constituent monomers. A flexible membrane will
always have a competition between the energy of curvature
and the in-plane stretching energy and will be able to buckle
in certain limits of surface tension and temperature �1�. The
buckling can be nonspecific and centered at dislocation �2� or
grain-boundary defects �3�, or it can be directional and cause
long “roof-tile” or tubelike structures to appear in partially
polymerized phospholipid vesicles �4�.

One would expect that anisotropic local interactions could
lead to interesting properties of the buckled membrane. We
report here on the buckling behavior of a membrane com-
posed of harmonically bound, but freely rotating electrostatic
dipoles. The dipoles have strongly anisotropic local interac-
tions and the membrane exhibits coupling between the buck-
ling and the long-range ordering of the dipoles.

Buckling behavior in liquid crystalline and biological
membranes is a well-known phenomenon. Relatively pure
phosphatidylcholine �PC� bilayers form a corrugated or
“rippled” phase �P��� which appears as an intermediate
phase between the gel �L�� and fluid �L�� phases. The P��
phase has attracted substantial experimental interest over the
past 30 years. Most structural information of the ripple phase
has been obtained by the x-ray diffraction �5,6� and freeze-
fracture electron microscopy �FFEM� �7,8�. Recently, Kaas-
gaard et al. used atomic force microscopy �AFM� to observe
ripple phase morphology in bilayers supported on mica �9�.
The experimental results provide strong support for a two-
dimensional �2D� triangular packing lattice of the lipid mol-
ecules within the ripple phase. This is a notable change from
the observed lipid packing within the gel phase �10�. There
have been a number of theoretical approaches �11–18� �and
some heroic simulations �19–23�� undertaken to try to ex-

plain this phase, but to date, none have looked specifically at
the contribution of the dipolar character of the lipid head
groups towards this corrugation. Lipid chain interdigitation
certainly plays a major role, and the structures of the ripple
phase are highly ordered. The model we investigate here
lacks chain interdigitation �as well as the chains themselves�
and will not be detailed enough to rule in favor of
�or against� any of these explanations for the P�� phase.

Membranes containing electrostatic dipoles can also ex-
hibit the flexoelectric effect �24–26�, which is the ability of
mechanical deformations to result in electrostatic organiza-
tion of the membrane. This phenomenon is a curvature-
induced membrane polarization which can lead to potential
differences across a membrane. Reverse flexoelectric behav-
ior �in which applied currents effect membrane curvature�
has also been observed. Explanations of the details of these
effects have typically utilized membrane polarization perpen-
dicular to the face of the membrane �26�, and the effect has
been observed in both biological �27�, bent-core liquid crys-
talline �25�, and polymer-dispersed liquid crystalline
membranes �24�.

The problem with using atomistic and even coarse-
grained approaches to study membrane buckling phenomena
is that only a relatively small number of periods of the cor-
rugation �i.e., one or two� can be realistically simulated
given current technology. Also, simulations of lipid bilayers
are traditionally carried out with periodic boundary condi-
tions in two or three dimensions and these have the potential
to enhance the periodicity of the system at that wavelength.
To avoid this pitfall, we are using a model which allows us to
have sufficiently large systems so that we are not causing
artificial corrugation through the use of periodic boundary
conditions.

The simplest dipolar membrane is one in which the di-
poles are located on fixed lattice sites. Ferroelectric states
�with long-range dipolar order� can be observed in dipolar
systems with nontriangular packings. However, triangularly
packed 2D dipolar systems are inherently frustrated and one
would expect a dipolar-disordered phase to be the lowest free*Electronic address: gezelter@nd.edu
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energy configuration �28,29�. Dipolar lattices already have
rich phase behavior, but in order to allow the membrane to
buckle, a single degree of freedom �translation normal to the
membrane face� must be added to each of the dipoles. It
would also be possible to allow complete translational free-
dom. This approach is similar in character to a number of
elastic Ising models that have been developed to explain in-
teresting mechanical properties in magnetic alloys �30–33�.

What we present here is an attempt to find the simplest
dipolar model which will exhibit buckling behavior. We are
using a modified XYZ lattice model; details of the model can
be found in Sec. II, results of Monte Carlo simulations using
this model are presented in Sec. III, and Sec. IV contains our
conclusions.

II. TWO-DIMENSIONAL DIPOLAR MEMBRANE

The point of developing this model was to arrive at the
simplest possible theoretical model which could exhibit
spontaneous corrugation of a two-dimensional dipolar me-
dium. Since molecules in polymerized membranes and in the
P�� ripple phase have limited translational freedom, we have
chosen a lattice to support the dipoles in the x-y plane. The
lattice may be either triangular �lattice constants a /b=�3� or
distorted. However, each dipole has 3 degrees of freedom.
They may move freely out of the x-y plane �along the z axis�,
and they have complete orientational freedom �0� =��
=�, 0� =��2��. This is essentially a modified X-Y-Z
model with translational freedom along the z axis.

The potential energy of the system,

V = �
i
��

j�i

���2

4�	0rij
3 �ûi·û j − 3�ûi·r̂ij��û j·r̂ij��

+ �
j�NNi

6
kr

2
�rij − 
�2	 . �2.1�

In this potential, ûi is the unit vector pointing along dipole
i and r̂ij is the unit vector pointing along the interdipole
vector rij. The entire potential is governed by three param-
eters, the dipolar strength ���, the harmonic spring constant
�kr�, and the preferred intermolecular spacing �
�. In prac-
tice, we set the value of 
 to the average intermolecular
spacing from the planar lattice, yielding a potential model
that has only two parameters for a particular choice of lattice
constants a �along the x axis� and b �along the y axis�. We
also define a set of reduced parameters based on the length
scale �
� and the energy of the harmonic potential at a de-
formation of 2
 �	=kr


2 /2�. Using these two constants, we
perform our calculations using reduced distances �r*=r /
�,
temperatures �T*=2kBT /kr


2�, densities ��*=N
2 /LxLy�, and
dipole moments ��*=� /�4�	0
5kr /2�. It should be noted
that the density ��*� depends only on the mean particle spac-
ing in the x-y plane; the lattice is fully populated.

To investigate the phase behavior of this model, we have
performed a series of Metropolis Monte Carlo simulations of
moderately sized �34.3
 on a side� patches of membrane
hosted on both triangular ��=a /b=�3� and distorted

����3� lattices. The linear extent of one edge of the mono-
layer was 20a and the system was kept roughly square. The
average distance that coplanar dipoles were positioned from
their six nearest neighbors was 1
 �on both triangular and
distorted lattices�. Typical system sizes were 1360 dipoles for
the triangular lattices and 840–2800 dipoles for the distorted
lattices. Two-dimensional periodic boundary conditions were
used, and the cutoff for the dipole-dipole interaction was set
to 4.3
. This cutoff is roughly 2.5 times the typical real-
space electrostatic cutoff for molecular systems. Since
dipole-dipole interactions decay rapidly with distance, and
since the intrinsic three-dimensional periodicity of the Ewald
sum can give artifacts in 2D systems, we have chosen not to
use it in these calculations. Although the Ewald sum has
been reformulated to handle 2D systems �34–38�, these
methods are computationally expensive �39,40�, and are not
necessary in this case. All parameters �T*, �*, and �� were
varied systematically to study the effects of these parameters
on the formation of ripplelike phases.

III. RESULTS AND ANALYSIS

A. Dipolar ordering and coexistence temperatures

The principal method for observing the orientational or-
dering transition in dipolar systems is the P2 order parameter
�defined as 1.5�max�, where �max is the largest eigenvalue
of the matrix,

S =
1
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Here ui
� is the �=x ,y ,z component of the unit vector for

dipole i. P2 will be 1.0 for a perfectly ordered system and
near 0 for a randomized system. Note that this order param-
eter is not equal to the polarization of the system. For ex-
ample, the polarization of the perfect antiferroelectric system
is 0, but P2 for an antiferroelectric system is 1. The eigen-
vector of S corresponding to the largest eigenvalue is famil-
iar as the director axis, which can be used to determine a
privileged dipolar axis for dipole-ordered systems. The top
panel in Fig. 1 shows the values of P2 as a function of tem-
perature for both triangular ��=1.732� and distorted
��=1.875� lattices.

There is a clear order-disorder transition in evidence from
this data. Both the triangular and distorted lattices have
dipolar-ordered low-temperature phases, and orientationally
disordered high-temperature phases. The coexistence tem-
perature for the triangular lattice is significantly lower than
for the distorted lattices, and the bulk polarization is approxi-
mately 0 for both dipolar ordered and disordered phases.
This gives strong evidence that the dipolar ordered phase is
antiferroelectric. We have verified that this dipolar ordering
transition is not a function of system size by performing
identical calculations with systems 2 times as large. The tran-
sition is equally smooth at all system sizes that were studied.
Additionally, we have repeated the Monte Carlo simulations
over a wide range of lattice ratios ��� to generate a dipolar
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order-disorder phase diagram. The bottom panel in Fig. 1
shows that the triangular lattice is a low-temperature cusp in
the T*-� phase diagram.

This phase diagram is remarkable in that it shows an an-
tiferroelectric phase near �=1.732 where one would expect
lattice frustration to result in disordered phases at all tem-
peratures. Observations of the configurations in this phase
show clearly that the system has accomplished dipolar order-
ing by forming large ripplelike structures. We have observed
antiferroelectric ordering in all three of the equivalent direc-
tions on the triangular lattice, and the dipoles have been ob-
served to organize perpendicular to the membrane normal �in
the plane of the membrane�. It is particularly interesting to
note that the ripplelike structures have also been observed to
propagate in the three equivalent directions on the lattice, but
the direction of ripple propagation is always perpendicular
to the dipole director axis. A snapshot of a typical antiferro-
electric rippled structure is shown in Fig. 2.

Although the snapshot in Fig. 2 gives the appearance of
three-row stairlike structures, these appear to be transient. On
average, the corrugation of the membrane is a relatively
smooth, long-wavelength phenomenon, with occasional
steep drops between adjacent lines of antialigned dipoles.

The height-dipole correlation function �Chd�r , cos ���
makes the connection between dipolar ordering and the wave
vector of the ripple even more explicit. Chd�r , cos �� is an
angle-dependent pair distribution function. The angle ��� is
the angle between the intermolecular vector r�ij and direction
of dipole i,

Chd =
� 1

n�r��i
�
j�i

hi · hj��r − rij���cos �ij − cos ��
�h2�

,

�3.2�

where cos �ij = �̂i · r̂ij and r̂ij =r�ij /rij. n�r� is the number of
dipoles found in a cylindrical shell between r and r+�r of
the central particle. Figure 3 shows contours of this correla-
tion function for both antiferroelectric, rippled membranes as
well as for the dipole-disordered portion of the phase
diagram.

The height-dipole corrselation function gives a map of
how the topology of the membrane surface varies with an-
gular deviation around a given dipole. The upper panel of
Fig. 3 shows that in the antiferroelectric phase, the dipole
heights are strongly correlated for dipoles in head-to-tail ar-
rangements, and this correlation persists for very long dis-
tances �up to 15 
�. For portions of the membrane located
perpendicular to a given dipole, the membrane height be-
comes anticorrelated at distances of 10
. The correlation
function is relatively smooth; there are no steep jumps or
steps, so the stairlike structures in Fig. 2 are indeed transient
and disappear when averaged over many configurations. In
the dipole-disordered phase, the height-dipole correlation
function is relatively flat �and hovers near zero�. The only

FIG. 1. Top panel: The P2 dipolar order parameter as a function
of temperature for both triangular ��=1.732� and distorted ��
=1.875� lattices. Bottom panel: The phase diagram for the dipolar
membrane model. The line denotes the division between the dipolar
ordered �antiferroelectric� and disordered phases. An enlarged view
near the triangular lattice is shown by the inset.

FIG. 2. �Color online� Top and side views of a representative
configuration for the dipolar ordered phase supported on the trian-
gular lattice. Note the antiferroelectric ordering and the long wave-
length buckling of the membrane. Dipolar ordering has been ob-
served in all three equivalent directions on the triangular lattice, and
the ripple direction is always perpendicular to the director axis for
the dipoles.
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significant height correlations are for axial dipoles at very
short distances �r�
�.

B. Discriminating ripples from thermal undulations

In order to be sure that the structures we have observed
are actually a rippled phase and not simply thermal undula-
tions, we have computed the undulation spectrum,

h�q�� = A−1/2� dr�h�r��e−iq� ·r�, �3.3�

where h�r�� is the height of the membrane at location r�
= �x ,y� �1,41�. In simple �and more complicated� elastic con-
tinuum models, it can shown that in the NVT ensemble, the
absolute value of the undulation spectrum can be written as

��h�q��2�NVT =
kBT

kcq
4 + �q2 , �3.4�

where kc is the bending modulus for the membrane, and � is
the mechanical surface tension �1�. The systems studied in
this paper have essentially zero bending moduli �kc� and rela-
tively large mechanical surface tensions ���, so a much sim-
pler form can be written as

��h�q��2�NVT =
kBT

�q2 , �3.5�

The undulation spectrum is computed by superimposing a
rectangular grid on top of the membrane, and by assigning

height �h�r��� values to the grid from the average of all di-
poles that fall within a given r�+dr� grid area. Empty grid
pixels are assigned height values by interpolation from the
nearest-neighbor pixels. A standard 2D Fourier transform is
then used to obtain ��h�q��2�. Alternatively, since the dipoles
sit on a Bravais lattice, one could use the heights of the
lattice points themselves as the grid for the Fourier transform
�without interpolating to a square grid�. However, if lateral
translational freedom is added to this model �a likely exten-
sion�, an interpolated grid method for computing undulation
spectra will be required.

As mentioned above, the best fits to our undulation spec-
tra are obtained by setting the value of kc to 0. In Fig. 4 we
show typical undulation spectra for two different regions of
the phase diagram along with their fits from the Landau free
energy approach �Eq. �3.5��. In the high-temperature disor-
dered phase, the Landau fits can be nearly perfect, and from
these fits we can estimate the tension in the surface. In re-
duced units, typical values of �*=� /	=2500 are obtained for
the disordered phase ��*=2551.7 in the top panel of Fig. 4�.

Typical values of �* in the dipolar-ordered phase are
much higher than in the dipolar-disordered phase
��*=73 538 in the lower panel of Fig. 4�. For the dipolar-
ordered triangular lattice near the coexistence temperature,
we also observe long wavelength undulations that are far
outliers to the fits. That is, the Landau free energy fits are
well within error bars for most of the other points, but can
be off by orders of magnitude for a few low frequency
components.
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cos (û · r̂)

r∗
(u

ni
ts

of
σ)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

2.5

5

7.5

10

12.5

15

17.5

antiferroelectric state

disordered state

FIG. 3. �Color online� Contours of the height-dipole correlation function as a function of the dot product between the dipole ��̂� and
interdipole separation vector �r̂� and the distance �r� between the dipoles. Perfect height correlation �contours approaching 1� are present in
the ordered phase when the two dipoles are in the same head-to-tail line. Anticorrelation �contours below 0� is only seen when the interdipole
vector is perpendicular to the dipoles. In the dipole-disordered portion of the phase diagram, there is only weak correlation in the dipole
direction and this correlation decays rapidly to zero for intermolecular vectors that are not dipole aligned.
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We interpret these outliers as evidence that these low fre-
quency modes are non thermal undulations. We take this as
evidence that we are actually seeing a rippled phase devel-
oping in this model system.

C. Effects of potential parameters on amplitude and
wavelength

We have used two different methods to estimate the am-
plitude and periodicity of the ripples. The first method re-
quires projection of the ripples onto a one-dimensional rip-
pling axis. Since the rippling is always perpendicular to the
dipole director axis, we can define a ripple vector as follows.
The largest eigenvector, s1, of the S matrix in Eq. �3.1� is
projected onto a planar director axis,

d� = 
s�1 · î

s�1 · ĵ

0
� �3.6�

�î, ĵ, and k̂ are unit vectors along the x, y, and z axes, respec-
tively�. The rippling axis is in the plane of the membrane and
is perpendicular to the planar director axis,

q� rip = d�  k̂ . �3.7�

We can then find the height profile of the membrane along
the ripple axis by projecting heights of the dipoles to obtain

a one-dimensional height profile, h�qrip�. Ripple wavelengths
can be estimated from the largest nonthermal low-frequency
component in the Fourier transform of h�qrip�. Amplitudes
can be estimated by measuring peak-to-trough distances in
h�qrip� itself.

A second, more accurate, and simpler method for estimat-
ing ripple shape is to extract the wavelength and height in-
formation directly from the largest nonthermal peak in the
undulation spectrum. For large-amplitude ripples, the two
methods give similar results. The one-dimensional projection
method is more prone to noise �particularly in the amplitude
estimates for the distorted lattices�. We report amplitudes and
wavelengths taken directly from the undulation spectrum
below.

In the triangular lattice ��=�3�, the rippling is observed
for temperatures �T*� from 61–122. The wavelength of the
ripples is remarkably stable at 21.4
 for all but the tempera-
tures closest to the order-disorder transition. At T*=122, the
wavelength drops to 17.1
.

The dependence of the amplitude on temperature is shown
in the top panel of Fig. 5. The rippled structures shrink
smoothly as the temperature rises towards the order-disorder
transition. The wavelengths and amplitudes we observe are
surprisingly close to the � /2 phase observed by Kaasgaard
et al. in their work on PC-based lipids �9�. However, this is
coincidental agreement based on a choice of 7 Å as the mean
spacing between lipids.

The ripples can be made to disappear by increasing the
internal elastic tension �i.e., by increasing kr or equivalently,
reducing the dipole moment�. The amplitude of the ripples
depends critically on the strength of the dipole moments ��*�
in Eq. �2.1�. If the dipoles are weakened substantially �below
�*=20� at a fixed temperature of 94, the membrane loses
dipolar ordering and the ripple structures. The ripples reach a
peak amplitude of 3.7
 at a dipolar strength of 25. We show
the dependence of ripple amplitude on the dipolar strength in
Fig. 5.

FIG. 4. Evidence that the observed ripples are not thermal un-
dulations is obtained from the 2D Fourier transform ��h*�q���2� of the
height profile ��h*�x ,y���. Rippled samples show low-wavelength
peaks that are outliers on the Landau free energy fits by an order of
magnitude. Samples exhibiting only thermal undulations fit Eq.
�3.4� remarkably well.

FIG. 5. �a� The amplitude A* of the ripples vs temperature for a
triangular lattice. �b� The amplitude A* of the ripples vs dipole
strength ��*� for both the triangular lattice �circles� and distorted
lattice �squares�. The reduced temperatures were kept fixed at T*

=94 for the triangular lattice and T*=106 for the distorted lattice
�approximately 2/3 of the order-disorder transition temperature for
each lattice�.
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D. Distorted lattices

We have also investigated the effect of the lattice geom-
etry by changing the ratio of lattice constants ��� while keep-
ing the average nearest-neighbor spacing constant. The anti-
ferroelectric state is accessible for all � values we have used,
although the distorted triangular lattices prefer a particular
director axis due to the anisotropy of the lattice.

Our observation of rippling behavior was not limited to
the triangular lattices. In distorted lattices the antiferroelec-
tric phase can develop nearly instantaneously in the Monte
Carlo simulations, and these dipolar-ordered phases tend to
be remarkably flat. Whenever rippling has been observed in
these distorted lattices �e.g., �=1.875�, we see relatively
short ripple wavelengths �14
� and amplitudes of 2.4
.
These ripples are weakly dependent on dipolar strength �see
Fig. 5�, although below a dipolar strength of �*=20, the
membrane loses dipolar ordering and displays only thermal
undulations.

The ripple phase does not appear at all values of �. We
have only observed nonthermal undulations in the range
1.625���1.875. Outside this range, the order-disorder
transition in the dipoles remains, but the ordered dipolar
phase has only thermal undulations. This is one of our stron-
gest pieces of evidence that rippling is a symmetry-breaking
phenomenon for triangular and nearly triangular lattices.

E. Effects of system size

To evaluate the effect of finite system size, we have per-
formed a series of simulations on the triangular lattice at a
reduced temperature of 122, which is just below the order-
disorder transition temperature �T*=139�. These conditions
are in the dipole-ordered and rippled portion of the phase
diagram. These are also the conditions that should be most
susceptible to system size effects.

There is substantial dependence on system size for small
�less than 29
� periodic boxes. Notably, there are resonances

apparent in the ripple amplitudes at box lengths of 17.3
 and
29.5
. For larger systems, the behavior of the ripples appears
to have stabilized and is on a trend to slightly smaller ampli-
tudes �and slightly longer wavelengths� than were observed
from the 34.3
 box sizes that were used for most of the
calculations. Fig 6 summarizes the effects of system size on
ripple wavelength and amplitude.

It is interesting to note that system sizes which are mul-
tiples of the default ripple wavelength can enhance the am-
plitude of the observed ripples, but appears to have only a
minor effect on the observed wavelength. It would, of
course, be better to use system sizes that were many mul-
tiples of the ripple wavelength to be sure that the periodic
box is not driving the phenomenon, but at the largest system
size studied �70
70
�, the number of dipoles �5440� made
long Monte Carlo simulations prohibitively expensive.

IV. DISCUSSION

We have been able to show that a simple dipolar lattice
model which contains only molecular packing �from the lat-
tice�, anisotropy �in the form of electrostatic dipoles� and a
weak elastic tension �in the form of a nearest-neighbor har-
monic potential�, is capable of exhibiting stable long-
wavelength nonthermal surface corrugations. The best expla-
nation for this behavior is that the ability of the dipoles to
translate out of the plane of the membrane is enough to break
the symmetry of the triangular lattice and allow the energetic
benefit from the formation of a bulk antiferroelectric phase.
Were the weak elastic tension absent from our model, it
would be possible for the entire lattice to “tilt” using z trans-
lation. Tilting the lattice in this way would yield an effec-
tively nontriangular lattice which would avoid dipolar frus-
tration altogether. With the elastic tension in place, bulk tilt
causes a large strain, and the least costly way to release this
strain is between two rows of antialigned dipoles. These
“breaks” will result in rippled or sawtooth patterns in the
membrane, and allow small stripes of membrane to form
antiferroelectric regions that are tilted relative to the aver-
aged membrane normal.

Although the dipole-dipole interaction is the major driv-
ing force for the long range orientational ordered state, the
formation of the stable, smooth ripples is a result of the
competition between the elastic tension and the dipole-dipole
interactions. This statement is supported by the variation in
�*. Substantially weaker dipoles relative to the surface ten-
sion can cause the corrugated phase to disappear.

The packing of the dipoles into a nearly triangular lattice
is clearly an important piece of the puzzle. The dipolar head
groups of lipid molecules are sterically �as well as electro-
statically� anisotropic, and would not pack in triangular ar-
rangements without the steric interference of adjacent mo-
lecular bodies. Since we only see rippled phases in the
neighborhood of �=�3, this implies that even if this dipolar
mechanism is the correct explanation for the ripple phase in
realistic bilayers, there would still be a role played by the
lipid chains in the in-plane organization of the triangularly
ordered phases which could support ripples. The present
model is certainly not detailed enough to answer exactly

FIG. 6. The ripple wavelength �top� and amplitude �bottom� as a
function of system size for a triangular lattice ��=1.732� at T*

=122.
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what drives the formation of the P�� phase in real lipids, but
suggests some avenues for further experiments.

The most important prediction we can make using the
results from this simple model is that if dipolar ordering is
driving the surface corrugation, the wave vectors for the
ripples should always be found to be perpendicular to the
dipole director axis. This prediction should suggest experi-
mental designs which test whether this is really true in the
phosphatidylcholine P�� phases. The dipole director axis
should also be easily computable for the all-atom and coarse-
grained simulations that have been presented in the literature.

Our other observation about the ripple and dipolar direc-
tionality is that the dipole director axis can be found to be
parallel to any of the three equivalent lattice vectors in the
triangular lattice. Defects in the ordering of the dipoles can
cause the dipole director �and consequently the surface cor-
rugation� of small regions to be rotated relative to each other
by 120°. This is a similar behavior to the domain rotation
seen in the AFM studies of Kaasgaard et al. �9�.

Although our model is simple, it exhibits some rich and
unexpected behaviors. It would clearly be a closer approxi-
mation to the reality if we allowed greater translational free-
dom to the dipoles and replaced the somewhat artificial lat-
tice packing and the harmonic elastic tension with more
realistic molecular modeling potentials. What we have done
is to present a simple model which exhibits bulk nonthermal
corrugation, and our explanation of this rippling phenom-
enon will help us design more accurate molecular models for
corrugated membranes and experiments to test whether
rippling is dipole driven or not.
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